weak banach-saks property in the space of compact operators

Authors

b. khadijeh moosavi

s. mohammad moshtaghioun

abstract

for suitable banach spaces $x$ and $y$ with schauder decompositions and‎ ‎a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$‎, ‎it is shown that the strong banach-saks-ness of all evaluation‎ ‎operators on ${mathcal m}$ is a sufficient condition for the weak‎ ‎banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in‎ ‎y^*$‎, ‎the evaluation operators on $mathcal{m}$ are defined by‎ ‎$phi_x(t)= tx$ and $psi_{y^*}(t)= t^*y^*.$‎

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

full text

. FA ] 1 9 Fe b 20 07 THE WEAK BANACH - SAKS PROPERTY OF THE SPACE

In this paper we show the weak Banach-Saks property of the Banach vector space (L p µ) m generated by m L p µ-spaces for 1 ≤ p < +∞, where m is any given natural number. When m = 1, this is the famous Banach-Saks-Szlenk theorem. By use of this property, we also present inequalities for integrals of functions that are the composition of nonnegative continuous convex functions on a convex set of ...

full text

The Banach-saks Property of the Banach Product Spaces

In this paper we first take a detail survey of the study of the Banach-Saks property of Banach spaces and then show the Banach-Saks property of the product spaces generated by a finite number of Banach spaces having the Banach-Saks property. A more general inequality for integrals of a class of composite functions is also given by using this property.

full text

The Banach-Saks property and Haar null sets

A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space X has the Banach-Saks property, then closed and convex subsets of X with empty interior are Haar null.

full text

The Closed Range Property for Banach Space Operators

Let T be a bounded operator on a complex Banach space X. If V is an open subset of the complex plane, we give a condition sufficient for the mapping f(z) 7→ (T − z)f(z) to have closed range in the Fréchet space H(V, X) of analytic X-valued functions on V . Moreover, we show that there is a largest open set U for which the map f(z) 7→ (T − z)f(z) has closed range in H(V, X) for all V ⊆ U . Final...

full text

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 40

issue 2 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023